Step of Proof: bij_imp_exists_inv
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
bij
imp
exists
inv
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
a1
,
a2
:
A
. (
f
(
a1
) =
f
(
a2
))
(
a1
=
a2
)
5.
b
:
B
.
a
:
A
. (
f
(
a
) =
b
)
g
:
B
A
. InvFuns(
A
;
B
;
f
;
g
)
latex
by ((((FwdThruLemma `ax_choice` [5])
CollapseTHENM (Thin 5))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
5.
f1
:
B
A
. (
b
:
B
.
f
(
f1
(
b
)) =
b
)
C1:
g
:
B
A
. InvFuns(
A
;
B
;
f
;
g
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
,
x
(
s1
,
s2
)
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
ax
choice
origin